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This paper generalizes Freeman’s geodesic centrality measures for betweenness on undi- 

rected graphs to the more general directed case. Four steps are taken. The point centrality 

measure is first generalized for directed graphs. Second, a unique maximally centralized graph is 

defined for directed graphs, holding constant the numbers of points with reciprocatable (incom- 

ing and outgoing) versus only unreciprocatable (outgoing only or incoming only) arcs, and 

focusing the measure on the maximally central arrangement of arcs within these constraints. 

Alternatively, one may simply normalize on the number of arcs. This enables the third step of 

defining the relative behveenness centralities of a point, independent of the number of points. 

This normalization step for directed centrality measures removes Gould’s objection that central- 

ity measures for directed graphs are not interpretable because they lack a standard for 

maximality. The relative directed centrality converges with Freeman’s betweenness measure in 

the case of undirected graphs with no isolates. The fourth step is to define the measures of this 

concept of graph centralization in terms of the dominance of the most central point. 

1. Introduction 

Betweenness centrality (Freeman 1977, 1979, 1980) is a fundamen- 
tal measurement concept for the analysis of social networks. The 
recent book by Hage and Harary (1991) demonstrates some of its 
many descriptive and predictive uses. It was originally defined, how- 
ever, only for undirected graphs. This constitutes a rather severe limit 
on its potential utility for directed (nonsymmetric) graphs and social 
networks. Gould (1987) argues that measures of betweenness central- 
ity are possible for the directed case, but that owing to lack of a unit 
of measurement and of a unique definition of the maximally central- 
ized graph for the directed case, the measure remains uninterpretable. 
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The present study identifies a unit of measurement and a uniquely 
maximal centralized graph for the directed case, and so provides for a 
proper generalization of betweenness centrality to directed graphs. 

2. Generalization of betweenness centrality to directed graphs 

Freeman (1980) showed how betweenness centrality for undirected 
graphs is derived from the column totals of a single matrix of the 
numbers of pairwise dependencies of each point on every other point 
in terms of mediating access in reaching third points. 

The following paragraphs parallel Freeman’s (1980: 587-588) 
derivation of the measure of pair-dependency, generalized here (with 
appropriate modifications) to directed graphs. 

“Consider a directed graph representing the nonsymmetric relation 
‘communicates to ’ for a set of people. When point i communicates to 
point j, j is said to be adjacent from i. A set of arcs linking i to j to k 
constitute a path from pi to pk. The shortest path linking one point to 
another is called a geodesic. There can, of course, be more than one 
geodesic for any ordered pair of points.” 

“Now let gi, = the number of geodesics from pi to pk, and gi,(pj) 
= the number of geodesics that contain point pj as an intermediary in 
the geodesics from pi to pk, then: 

Thus, hik(qj) is the proportion of geodesics linking pi to I)k that 
contain pi: it is an index of the degree to which pi and pk need pj in 
order to communicate along the shortest path linking them together. 
Since it is a proportion, 0 I bik(pj) I 1. Moreover, when bik(pj)j) = l,Pj 
is strictly between pi and * pk, they cannot communicate along the 
geodesic(s) linking them without its support in relating messages. In 
such a situation the communication from pi to pk is completely at the 
whim of pi: he can distort or falsify any information passing through 
him.” 

“Now we can define pair-dependency as the degree to which a 
point, pi, must depend upon another, pj, to relay its messages along 
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geodesics to other reachable points in the network. Thus, 
network containing n points, 

d$ = 2 bik(Pj)(i #j f k) 
k=l 

is the pair-dependency of pi on pj.” 

“We can calculate the pair-dependencies of each point on 
other point in the network and arrange the results in a matrix, 

D = (d;) 

Each entry in D is an index of the degree to which the point 
designated by the row of the matrix must depend on the point 
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designated by the column to relate messages to others. Thus D 
captures the importance of each point as a gatekeeper with respect to 
each other point-facilitating or perhaps inhibiting its communica- 
tion.” 

“Whenever any person is in a position to be a gatekeeper for 
communications, others must depend on that person. A gatekeeper 
position, however, may be either rather wide or quite narrow in its 
impact. . . ” 

“Obviously, such local pair effects are of great potential importance 
to the points affected. In large networks, where individuals may be at 
considerable distance from one another, global patterns may be sub- 
merged and pair effects may be the main factors determining informa- 
tion flows.” 

Freeman (1980) shows for undirected graphs that the sums down 
the columns of the pair-dependency 
tweenness centrality of the points: 

n 

C dz =2cB(Pj) 
i=l 

CB<pj), the betweenness centrality of point j, is twice the value of its 
pair dependency column sum: twice because the upper diagonal and 
lower diagonals are equal in the pair-dependency matrix of an undi- 
rected graph. 

matrix D is a measure of be- 
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To generalize Freeman’s measure of betweenness point centrality, 
C,(p,), for directed graphs, we use the equality: 

cf3(Pj)= kd,T 

i=l 

We divide further by two for comparability with Freeman’s measure 
for undirected graphs. 

3. The maximally centralized graph 

It is desirable for some purposes to have a measure of betweenness 
centralities that is not affected by the number of points in the graph 
(Leavitt 1951). Freeman (1977: 37-40) derived such a measure by 
dividing C,(p,) by the maximal value it can take relative to points in 
the graph. In showing the existence of the maximum, he also showed 
that the unit of measurement for increases in a point’s centrality in a 
graph was the addition of an arc to the graph that increased the 
number of paths through the point. The measure of centrality mono- 
tonically increases as such arcs are added to a graph, and reaches its 
maximum when no more such arcs can be added. He also proved by 
this procedure that an undirected graph with maximal betweenness 
centrality for one of its points is always a star, where the central point 
is adjacent to all of the other points and none of the other points are 
adjacent to one another. 

For meaningful interpretation of a measure of centrality, one needs 
to be able to derive its minimum and maximum, and a unit of 
measurement with respect to which it is monotone. Gould (1987) 
examined this question and was unable to define either a maximum 
value or a unit of measurement for directed graphs. Thus, he argued 
that while it was possible to define a betweenness centrality measure 
for directed graphs, one could not interpret the measure. Borgatti and 
Bonacich (1989) also arrived at the measure of C,(pjl for directed 
graphs, without the normalization and unit of measurement. 

In a directed graph, if no is the number of points with outgoing 
arcs and nzI the number with incoming arcs, then in a star graph the 
product (n, - l>(n, - 1) is the number of paths through the center. 
The directed graph with maximal point betweenness, given nI and no, 
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is a star in which points with incoming and outgoing arcs are maxi- 
mally disjoint. In such a star, each arc contributes to the betweenness 
centrality of the center point. Let its = the number of points with 
reciprocated arcs. The betweenness centrality of the most centralized 
star for a directed graph is: 

Again we divide by 2 for consistency with Freeman’s measure. In 
the case of an undirected graph, yti = no = ~zs = ~1, and the formula for 
betweenness centrality of a star simplifies to: 

Divided by 2, this converges with Freeman’s result for the between- 
ness centrality of the most central point in the most centralized 
(undirected) graph. 

Now let us duplicate for the directed case Freeman’s procedure for 
adding arcs to a graph, beginning with isolated points, so as to 
increase the betweenness centrality of a single most central point until 
its maximum is reached. To do so, we must add arcs that connect 
peripheral points in a star to the central point. In the directed case, 
we must add the arcs so as to form the maximum number of (directed) 
paths that run through the center point. The simplest graph with a 
directed star pattern, as shown in Fig. 1, begins with two arcs, from i 

to j and j to k, j being the central point that sits on the path from i 

to k. To obtain the maximal value of C,<pj> with each new arc with 
additional points, one must alternate between addition of incoming 
and outgoing arcs with respect to the central point j. Figure 2 shows 
two ways of adding an arc to the graph in Fig. 1 to span another point 
and retain maximal betweenness centrality. For the first 12 - 1 arcs 
added to a graph with n points, reciprocated connections between 

Q \ \ @ 
I J K 

cB(Pj) = i is the maximal betweenness 

Fig. 1. Simplest directed star. 
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CB (Pj) = 2 is the maxlmal betweenness 

r-+---i< 
Fig. 2. Next larger directed stars. 

center and periphery are avoided because they produce less of an 
increase in betweenness centrality than adding only arcs that are 
unreciprocated. Figure 3 shows a graph with maximal betweenness 
centrality of point j with 5 points and 4 arcs. It has 4 (directed) paths 
mediated by point j and gives C,(p,) = 4. Figure 4 shows two graphs 
where instead of the last arc m + j in Fig. 3 we add arcs that 
reciprocate the relation either between i and j or between j and k. 
Here C,(p,) = 2 in one case and C,(pj) = 3 in the other. These are 
not graphs of maximal centralization. 

Once the first II - 1 directed arcs are added to maximize the 
betweenness centrality of the center point with the addition of each 
arc, the star pattern so formed connects each of the graph’s 12 - 1 

CB bjl = 4 IS the maximal betweenness 

Fig. 3. Successively larger directed star. 
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11 
Fig. 4. Alternate directed stars. 

peripheral points to the central point j. This is the maximal directed 
star pattern of an asymmetric graph. If the number of points is odd, 
one has ~zr = no = (n + 1) and its = 0, and 

max C,(pj) = ((n + 1)/2 - l)((n + 1)/2 - 1) = (n” - 2n + 1)/4 

In Fig. 3, for example, max C,(pj)i) = (25 - 10 + 1)/4 = 4. If the 
number of points is even, the maximal centrality is 

max CB(pj) = (n/2 - l)(n/2 + 1 - 1) = (n” - 2n)/4 

In Fig. 2, max CB<pj) = (16 - 8)/4 = 2. In general, 

max CB(pj) = (n/2 - l)(n/2 + 1 - 1) = (n’- 2n + modulo(n, 2))/4 

This is the maximum of star-pattern centralities for asymmetric 
graphs, but it is not the maximum for a directed (nonsymmetric) 
graph, since one can continue to increase the centrality of the central 
point by adding reciprocated arcs (again, in an alternating fashion), in 
which case one arrives at Freeman’s undirected star as the limiting 
case. 

Since we have established a procedure for adding arcs so as to 
monotonically and maximally increase the measure of centrality, the 
question of the meaningfulness of the measurement for betweenness 
centrality in directed graphs is not a matter of a lack of a unit of 
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measurement. It is that while a maximum is well defined for the 
asymmetric and undirected (symmetric) graphs, the maximum is not 
yet uniquely defined for the general case of the directed (nonsymmet- 
ric) graph. 

Defining betweenness centrality for directed graphs must depend 
on a specification of the parameters y1,, no and ~1s. At one extreme 
we have asymmetric graphs where n, = 0, and at the other we have 
undirected graphs where n, = n. Maximal betweenness is in each case 
a specialization of the general formula: 

max cf?( Pj) = ( nzI - l)(n, - 1) - (lls - 1) 

What is the maximal betweenness centrality for intermediate case 
where 0 < lls < n? We need to define a maximal value that takes into 
account a limit on the number of points with reciprocatable arcs 
having both incoming and outgoing arcs (only for such points can arcs 
be reciprocated). This implies a limit on the remaining points with 
unreciprocatable arcs (with only incoming or only outgoing arcs). The 
simplest way to do this is to hold constant, as observed in the actual 
graph, the number ~zs of points with reciprocatable arcs and those 
with only unreciprocatable arcs (n, - ns and no -n,> *. Then maxi- 
mum point centrality is obtained by our procedure for adding arcs up 
to the limit on the number of points with only in- or outwardly 
oriented arcs, and then up to the limit on the separate set of points 
with reciprocatable arcs (the unit of measurement procedure for 
constructing the maximal graph requires we add arcs at first as 
unreciprocated arcs between the center and each peripheral point and 
then proceed to make them reciprocal, following the rule of alternat- 
ing orientation). Then our general formula will apply where the 
parameters n,, ylo, and ns are fixed from the empirical graph under 
study. 2 

’ Alternately, we may simply normalize on the number of arcs, as follows. Take the k arcs, 
allocate k + 1- n of them to ns reciprocatable points, and divide the remainder among the 

remaining points so that n, + no - ns = n and n, and no differ at most by one. This defines the 

most centralized graph holding constant only the number of arcs, but does not control for the 

degree of symmetry in the graph. 
’ The C,(p,) measure for the maximum graph, in the case of undirected graphs with no isolates, 
will converge with Freeman’s measure (multiplied by 2). 
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4. Relative betweenness centrality for directed graphs: interpretability 

The relative betweenness centrality of a point j is its betweenness 
centrality C,(p,) divided by the maximum betweenness centrality, 
max C,(pj), holding constant the number of nodes in the graph with 
reciprocatable arcs 12s or only unreciprocatable arcs, IZ~ - ns, n, - ns: 

cL( Pj) = Cd Pj)/maX cfl( Pj) 

= CB(Pj>/(nI - l)(n, - 1) - (ns - 1) 

The measure CL(pj) converges with Freeman’s relative between- 
ness centrality measure in the case of undirected graphs with no 
isolates. Normalizing the point centrality measure establishes compa- 
rability between graphs not only of different sizes but of differing 
degrees of symmetry, and prevents the measure of relative centrality 
in graphs with very few reciprocated relations from being deflated 
because of their lack of symmetry. This step (or the alternate one in 
note 1) in normalizing the directed centrality measure removes Gould’s 
(1987) objection that centrality measures for directed graphs are 
uninterpretable because they lack a standard for maximality. 

What is the interpretation for the betweenness centrality of a point 
relative to one with maximal betweenness in a graph of the same 
number of points and of points with reciprocatable or only unrecipro- 
catable arcs of each type? By holding constant the number of points in 
terms of their types of arcs, we are measuring the extent to which the 
existing arcs between these types of points could be rearranged-ad- 
ding arcs to the center and deleting other arcs to peripheral points-to 
increase the centrality of the dominant point. 

5. Measures of graph centralization 

Following Freeman (1977: 391, the overall centralization of a graph 
is defined as the average difference in centrality between the most 
central point and all others. We define Ce(pk*) and as the largest 
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5 6 

C6[p)4= 6 is the largest betweenness 

Parameters: No = 5. NI = 5. NS = 4. n = 6 

Fig. 5. Example of empirical graph. 

centrality value associated with any point in the graph. Then we have 
as the measures of dominance of the most central point: 

i [CB(PZ) - G?h)l 
CL= i=l 

n-l 

This measure of C’B converges with Freeman’s measure of be- 
tweenness graph centralization in the case of undirected graphs with 
no isolates. 

6. Example 

Consider the graph in Fig. 5. Here C,(p,) = 1 and C,(p,) = 8.5. 
This graph has the parameters nI = 5 (5 points with incoming arcs), 
no = 5 (five with outgoing arcs), and ns = 4 (4 with both incoming and 
outgoing arcs). A maximally centralized graph with these parameters 
is shown in Fig. 6, where CB(pk*) = (n, - l)(n, - 1) - (n, - 1) = (5 
- 1)(5 - 1) - (4 - 1) = (16 - 3) = 13. The relative centrality for the 
most central point is 

WPJ = G(P‘d/ max C,( pj) = 8.5/13 = 0.65 
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Parameters: No = 5. NI = 5. NS = 4. n = 6 

Fig. 6. Maximally central directed star corresponding to empirical graph. 

The relative centralities for the other two points with betweenness 
centrality are 

G(P3) = CL?(P,V max C,( pi) = 3/13 = 0.23 

c&4 = C&2)/ max C,( pj) = 0.5/13 = 0.04 

The graph centralization is 

2 [C&k*) - G(Pi)l 
c;,= j=l 

n-1 

= 
3(0.65 - 0) + (0.65 - 0.23) + (0.65 - 0.04) = o 5. 

5 

7. Conclusion 

Development of a standardized measure of betweenness for di- 
rected graphs is an important step in the development of scientific 
propositions concerning social networks. Centrality is a fundamental 
property of actors and has numerous predictive consequences. Free- 
man’s measures of betweenness centrality are conceptually well de- 
fined and known to provide correspondence between theoretical pre- 
dictions and substantive findings about network centralities where the 
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social relations are symmetric, as with the Bavelas small-group 
experiments (Bavelas 1950; see Freeman et al. 1980). Extending them 
to directed graphs increases the interpretability of similar findings and 
the testability of theoretical propositions in the larger arenas of 
directed graphs and social networks with directed relations. 
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