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Abstract

We study the statistical properties of a recently proposed social networks measure of fragmentation F after removal of a

fraction q of nodes or links from the network. The measure F is defined as the ratio of the number of pairs of nodes that are

not connected in the fragmented network to the total number of pairs in the original fully connected network. We compare

this measure with the one traditionally used in percolation theory, P1, the fraction of nodes in the largest cluster relative to

the total number of nodes. Using both analytical and numerical methods, we study Erd +os–Rényi (ER) and scale-free (SF)

networks under various node removal strategies. We find that for a network obtained after removal of a fraction q of nodes

above criticality, P1 � ð1� FÞ
1=2. For fixed P1 and close to criticality, we show that 1� F better reflects the actual

fragmentation. For a given P1, 1� F has a broad distribution and thus one can improve significantly the fragmentation of

the network. We also study and compare the fragmentation measure F and the percolation measure P1 for a real national

social network of workplaces linked by the households of the employees and find similar results.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Complex networks can be used to model many physical, sociological and biological systems and have
attracted much attention in recent years [1–14]. Among the problems related to complex networks, the
fragmentation of networks has been extensively studied [5–11]. The problem is defined as finding the statistical
properties of the fragmented networks after removing nodes (or links) from the original fully connected
network using a certain strategy. Many different removal strategies have been developed for various purposes,
e.g., mimicking the real world network failures, improving the effectiveness of network disintegration, etc.
e front matter r 2006 Elsevier B.V. All rights reserved.
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Examples include random removal (RR) strategy, the high degree removal (HDR) strategy and the high
centrality removal strategy [8,15–17].
Recently, a new measure of fragmentation has been developed in social network studies [18]. Suppose a fully

connected network of N nodes is fragmented into separate clusters [19] by removing m nodes following a
certain strategy. We define q � m=N the ratio of nodes removed and p � 1� q the ratio of existing nodes. The
degree of fragmentation F of the network is defined as the ratio between the number of pairs of nodes that are
not connected in the fragmented network to the possible number of pairs in the original fully connected
network. Suppose there are m clusters in the fragmented network, since all members of a cluster are, by
definition, mutually reachable, the measure F can be written as follows [18]:

F � 1�

Pm
j¼1NjðNj � 1Þ

NðN � 1Þ
� 1� C. (1)

Here, Nj is the number of nodes in cluster j, m is number of clusters in the fragmented network, and N the
number of nodes in the original fully connected network. For an undamaged network, F ¼ 0. For a totally
fragmented network, F ¼ 1. The quantity C defined in Eq. (1) can be regarded as the ‘‘connectivity’’ of the
network. When C ¼ 1 the network is fully connected while for C ¼ 0 it is fully fragmented.
In this paper, we study the statistical behavior of F � 1� C using both analytical and numerical

methods and relate it to the traditional measure, the relative size of the largest cluster P1, used in per-
colation theory. In this way, we are able to obtain analytical results for the fragmentation F of networks. We
study two removal strategies: the random removal (RR) strategy which removes randomly selected nodes
and the high degree removal (HDR) strategy which targets and removes nodes with highest degree. The
HDR strategy first removes the node with the highest degree, and then the second highest and so on.
These two strategies are commonly used in models representing random and targeted attacks in real world
networks [2,5–7].
2. Theory

Traditionally, in analogy to percolation, physicists describe the connectivity of a fragmented network by the
ratio P1 � N1=N (called the incipient order parameter) between the largest cluster size N1 (called the infinite
cluster) and N. Many properties have been derived for this measure [5,20,21]. For example, in random
networks, P1 undergoes a second order phase transition at a threshold pc. Below pc, P1 is zero for N ! 1,
while for p4pc, P1 is finite. This occurs for both RR and HDR in random networks [5–7,20]. The threshold
parameter pc depends on the degree distribution, the network topology, and the removal strategy [5–7,20,21].
The specific way that P1 approaches zero at pc depends on the network topology and removal strategy but not
on details such as pc. In scale free networks, where the degree distribution pðkÞ	k�l and 2olo3, it has been
found that pc ! 0 for RR strategy [5] while pc is very high for HDR strategy [6,7]. For l43 and RR, pc

is finite.
Next, we show simulation results of removing nodes in both strategies (RR and HDR) on ER and scale free

networks. Fig. 1 shows the behavior of C (� 1� F ) and P1 versus q for Erd +os–Rényi (ER) and scale-free (SF)
networks with RR (Fig. 1(a) and (b)) and HDR (Fig. 1(c) and (d)) strategies. As seen in Fig. 1(a), the network
becomes more fragmented when q increases and both measures drop sharply at qc ¼ 1� pc. Note that C shows
a transition similar to P1 at p ¼ pc; however, above qc, C becomes more flat in contrast to P1, indicating the
effect of connectivity in the small clusters which do not effect P1.
In contrast to Fig. 1(a), the transition in Fig. 1(b) is not so sharp and therefore C and P1 do not show a

collapse together. The reason is that for l ¼ 2:5 there is no transition at qo1 [6] and for l ¼ 3:5, P1 falls
much less sharply compared to ER [22]. For HDR shown in Fig.1(c) and (d), the transition is again sharp since
after removing high degree nodes the network becomes similar to ER networks, which do not have high degree
nodes [7].
When p4pc and not too close to pc, following percolation theory, the infinite cluster dominates

the system and P1 � p, i.e., most of unremoved nodes are connected. Thus, we assume that the small
clusters will have a small effect on C compared to the largest one. Using this assumption, Eq. (1) can be
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Fig. 1. The behavior of C and P1 versus q on ER and SF networks. For ER networks, N ¼ 200 000 and hki ¼ 3. For SF networks,

N ¼ 80 000. The graphs are (a) RR strategy on ER networks, (b) RR strategy on SF networks, (c) HDR strategy on ER networks and

(d) HDR strategy on SF networks.
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written as

C � 1� F �

Pi
j¼1NjðNj � 1Þ

NðN � 1Þ
�

N1ðN1 � 1Þ

NðN � 1Þ
�

N2
1

N2
� P21. (2)

Therefore, we expect P1 and C have the relationship P1 � C1=2 when p4pc (but not too close to pc). When
pppc, the infinite cluster loses its dominance in the system and P1	 lnðNÞ=N ! 0 for large N [7]. Here
significant variations between P1 and C1=2 are expected, as indeed seen in Fig. 2.
3. Simulations

We test by simulations the relationship C	P21 derived for p4pc in Eq. (2). In Fig. 2(a) we plot P1 versus
C1=2 for RR strategy in ER networks and for several values of p. As predicted by Eq. (2), the plot of P1 versus
C1=2 yields a linear relationship with slope equal to 1 when p4pc ¼ 1=hki ¼

1
3
. The range of P1 and C1=2 for

p ¼ 0:4 is due to the variation of P1 for a given p and the same variation appears for C1=2 showing that the
infinite cluster dominates and Eq. (2) is valid. However, when p drops close to pc ¼

1
3
, the system approaches

criticality and the one-to-one correspondence between C1=2 and P1 is not so strong. This variation is
attributed to the presence of clusters other than the infinite one, which influence C but not P1.
Similar behavior is observed for RR strategy in SF networks with l ¼ 3:5 shown in Fig. 2(b). For l ¼ 3:5,

the variation in C1=2 emerge close to pc ¼ 0:2. However, for l ¼ 2:5, percolation theory suggests that pc

approaches 0 for large systems. As a result, no significant variation is observed even when P1 is as small as
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Fig. 2. Relationship between C1=2 and P1 for ER and SF networks with system size N ¼ 50 000. For ER networks, the average degree

hki ¼ 3, and for SF networks, l ¼ 2:5 and 3:5. The graphs are (a) RR strategy on ER networks, (b) RR strategy on SF networks, (c) HDR
strategy on ER networks and (d) HDR strategy on SF networks.
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5� 10�4. This observation supports that the SF networks with lo3 are quite robust in sustaining its infinite
cluster against random removal [5]. Fig. 2(c) and (d) shows the results for HDR strategy in ER and SF
networks. For this targeted strategy, the variation of C1=2 and P1 shows up at significantly higher p compared
to the random case, indicating that the infinite cluster breaks down easier under HDR attacks for both ER and
SF networks, as seen also in Fig. 1. At this point, the SF network with l ¼ 2:5 becomes no longer as robust as
in the random case, as it can be clearly observed in the large variation at P1 � 0:05.
To further investigate the characteristics of the variation of C for a given P1, we calculate the

probability distributions pðCÞ versus C=C̄ for a given P1 where C̄ is the average value of C and the results
are plotted in Fig. 3. In this case, C
, the most probable value of C, is determined by the fixed infinite
cluster size P1 with C
 � P21, and the broadness of pðCÞ comes from the presence of clusters other than
the infinite one. Because the largest cluster size is fixed, the upper cutoff of pðCÞ emerges due to the limitation
on the sizes of other clusters that by definition must be smaller than the largest cluster. For the RR strategy,
the broadness of pðCÞ for ER network is bigger than that of SF networks at the same P1, especially
for l ¼ 2:5 where the system is always high above criticality and the variation is relatively small. On the
contrary, for the HDR strategy, the broadness of pðCÞ for ER and SF networks are of the same order due
to the fact that for HDR, pc is also finite for l ¼ 2:5. This observation is consistent with the results shown
in Fig. 2.
The broadness of pðCÞ for fixed P1 is quantitatively characterized by its standard deviation sC . Fig. 4(a)

shows the relative standard deviation sC=C̄ for the RR strategy in ER networks, where C̄ is the average value
of C. For increasing value of P1, the infinite cluster gradually gains control of the system and therefore sC=C̄
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becomes smaller. It can also be observed that sC is smaller for larger system sizes N and larger hki. The result
for the HDR strategy is shown in Fig. 4(b) and one can observe that in this case, the relative standard
deviation of C is much less sensitive to the value of P1, as expected in Fig. 3.
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Now we focus on the dependence of pðCÞ on the system size N at pc (Fig. 5). From percolation theory and
for ER under RR strategy, the infinite cluster size N1 at criticality behaves as [23,24]

N1	N2=3. (3)

Since C follows similar behavior as N1 at criticality, we expect C for p ¼ pc to behave as,

C � 1� F � ðN1=NÞ
2
	N�2=3. (4)

Thus, we expect the probability distribution pðCÞ with p ¼ pc to scale as

pðCÞ ¼ N2=3gðCN2=3Þ, (5)

where g is a scaling function.
Fig. 5 supports this scaling relationship. We calculate pðCÞ for RR strategy at criticality on ER networks

with N values of 50 000, 100 000, 200 000 and hki ¼ 3 (shown in Fig. 5a), and find a good collapse when plotted
(Fig. 5b) using the scaling form of Eq. (5).

4. Real networks

The structure ER networks and SF networks that we have been studying so far are random and only
determined by the degree distribution of the network. Research has shown that real networks often exhibit
structural properties of importance for the percolation threshold such as high level of clustering, assortativity
and fractality that these types of networks do not exhibit [12,25]. We therefore test our results about the
correlation between C and P1 on a large real social network. The network we use is extracted from a data set
obtained from Statistics Sweden [26] and consists of all geographical workplaces in Sweden that can be linked
with each other by having at least one employee from each workplace sharing the same household. Household
is defined as a married couple or a couple having kids together that are living in the same flat or house.
Unmarried couple without kids and other individuals sharing household are not registered in the data set as
household. This kind of network has been shown to be of importance for the spreading of influenza [27] and is
also likely to be of importance for the spread of information and rumors in society. The network consists
of 310136 nodes (workplaces) and 906260 links (employees sharing the same households) and, as shown in
Fig. 6(a), is approximately a SF network with l � 2:6 and an exponential cut off. The network shows almost
no degree-correlation (assortativity) preference (Fig. 6(b)). However, the workplace network clustering
coefficient c is significantly higher than the random SF network with same l and N (Fig. 6(c)). The average of c

is 0:048 for the workplace network versus 3:2� 10�4 for the random SF networks, which is consistent with the
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earlier social network studies [28,29]. Fig. 7(a) and (b) shows simulation results for several values of p for P1

versus C1=2. The curves are linear, similar to Fig. 2 for our model networks. Moreover, Fig. 7(c) and (d) shows
that C1=2 and P1 are almost identical above the criticality thresholdpc for a typical configuration after either
RR and HDR. For p below criticality, differences appear which are especially obvious for HDR strategy
where qc ¼ 1� pc is relatively small. While P1 rapidly decreases to a very small value (below 10

�5), a plateau
shows up in the curve of C1=2 due to the influence of the small clusters.

5. Summary

In summary, we study the measure for fragmentation F � 1� C proposed in social sciences and relate
it to the traditional P1 used in percolation theory. For p above criticality, C and P1 are highly correlated
and C � P21. Close to criticality, for pXpc and below pc, variations between C and P1 emerge due to the
presence of the small clusters. For systems close to or below criticality, F gives better precision
for fragmentation of the whole system compared to P1. We study the probability distribution pðCÞ for a
given P1 and find that pðCÞ at p ¼ pc obeys the scaling relationship pðCÞ ¼ N2=3gðCN2=3Þ for both RR
strategy on ER network, and for HDR on scale free networks. For an alternative measure of connectivity of
networks see Ref. [30].
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